granica ciągu
iza: a)
an = 3+6+9+...+3n / (2n+3)(7n−1)
b)
an = 1+2+3+...+n / 4+8+12+...+4n
18 sty 13:26
Janek191:
an = ( 3 + 6 + 9 + ... + 3n) /[ ( 2n + 3)*(7n − 1)]
b1 = 3
bn = 3n
r = 6 − 3 = 3
Sn = 0,5 *{ b1 + bn]*n = 0,5*[ 3 + 3n]*n = 1,5 *(1 + n)*n
więc
an = [ 1,5 n *(1 + n)]/ [ (2n + 3)*( 7n − 1)] = [ 1,5 *( 1/n + 1)]/[ (2 + 3/n)*( 7 − 1/n)]
więc
lim an = 1,5/14 = 3/28
n→+∞
bo 1/n → 0, 3/n → 0, 1/n → 0, gdy n → +∞
18 sty 13:45
Janek191:
b)
1 + 2 + 3 + ... + n = 0,5 n*(n + 1)
4 + 8 + 12 + ... + 4n = 4*(1 + 2 + 3 + ... + n )
więc
an = 1/4
czyli
lim an = 1/4
n→+∞
18 sty 13:48