Funkcja kwadratowa z parametrem
Cinia: Dla jakich wartosci parametru a rozne miejsca zerowe x
1, x
2 funkcji f(x) = x
2 − 5x +1 − a
spełniają warunek 4x
1 − 3x
2 = −1.
Moje rozwiązanie:
Dwa warunki Δ>0 i 4x
1 − 3x
2 = −1
z delty a > −
214 jesli dobrze licze, tylko jak przeksztalcic drugi warunek i wkorzystac
wzory Viete'a

?
17 sty 14:43
Mati_gg9225535: a probowales wyliczyc x1 i x2 z delty ?
17 sty 14:45
Mati_gg9225535: próbowałeś/próbowałaś
17 sty 14:45
Cinia: nie mam pomyslu jak wyliczyc, jakas mala wskazowka?
17 sty 14:47
Cinia:
17 sty 14:53
Mati_gg9225535:
jak wyliczysz Δ = 25 − 4(1 − a) = 25 − 4 + 4a = 21 + 4a
√Δ =
√21 + 4a
| | 5 − √21 + 4a | | 5 + √21+4a | |
x1 = |
| x2 = |
| i to sprobowac podstawic do 2 warunku? |
| | 2 | | 2 | |
17 sty 14:54
b.: wzory Viete'a się za bardzo nie przydadzą, zrób jak pisze Mati, tylko pamiętaj o drugim
przypadku (x1 i x2 zamienione rolami)
17 sty 14:57
Cinia: faktycznie, jednak latwizna, dzieki za pomoc.
17 sty 15:03