matematykaszkolna.pl
Pochodna Analiza: ile wynosi pierwsza i druga pochodna z
  lnx  
f(x)=

  x  
13 sty 20:08
Janek191: ln x f(x) = −−−− ; x > 0 x zatem ( ln x )' * x − ln x * ( x ) ' f '(x) = −−−−−−−−−−−−−−−−−−−−−−−−− = ( x )2 (1/x) * x − ln x * ( 1 / 2 x ) = −−−−−−−−−−−−−−−−−−−−−−− = x x−1 * x1/2 − ln x * 0,5 x − 1/2 = −−−−−−−−−−−−−−−−−−−−−−−−−−−−− = x = x− 3/2 − ln x *0,5 x− 3/2 =========================== oraz f " (x) = ( − 3/2) x − 5/2 − [ ( 1/x) *0,5 x−3/2 + ln x *( −3/4) x −5/2 ] = = ( − 3/2) x − 5/2 − 0,5 x − 5/2 + ln x * ( 3/4) x − 5/2 = = [ ( −6/4) − (3/4) + (3/4) ln x ] * x − 5/2 = = [ 0,75 ln x − 2,25 ] * x − 5/2 ==========================
13 sty 20:26
Analiza: Dzięki
13 sty 20:27