Pochodna
Analiza: ile wynosi pierwsza i druga pochodna z
13 sty 20:08
Janek191:
ln x
f(x) = −−−− ; x > 0
√x
zatem
( ln x )' * √x − ln x * ( √x ) '
f '(x) = −−−−−−−−−−−−−−−−−−−−−−−−− =
( √x )2
(1/x) * √x − ln x * ( 1 / 2 √x )
= −−−−−−−−−−−−−−−−−−−−−−− =
x
x−1 * x1/2 − ln x * 0,5 x − 1/2
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−− =
x
= x− 3/2 − ln x *0,5 x− 3/2
===========================
oraz
f " (x) = ( − 3/2) x − 5/2 − [ ( 1/x) *0,5 x−3/2 + ln x *( −3/4) x −5/2 ] =
= ( − 3/2) x − 5/2 − 0,5 x − 5/2 + ln x * ( 3/4) x − 5/2 =
= [ ( −6/4) − (3/4) + (3/4) ln x ] * x − 5/2 =
= [ 0,75 ln x − 2,25 ] * x − 5/2
==========================
13 sty 20:26
Analiza: Dzięki
13 sty 20:27