| dx | ||
∫ | ||
| x√2 + x − x2 |
| dx | ||
√2∫ | dx | |
| x√4+2x−2x2 |
| 2 − 4t | ||
x = | ||
| t2+2 |
| 2t − 4t2+2t2+4 | ||
xt+2 = | ||
| t2+2 |
| 4+2t−2t2 | ||
xt+2 = | ||
| t2+2 |
| −4(t2+2)−2t(2−4t) | ||
dx = | dt | |
| (t2+2)2 |
| 4+2t−2t2 | ||
dx = −2 | dt | |
| (t2+2)2 |
| t2+2 | t2+2 | −2(4+2t−2t2) | ||
√2∫ | dt | |||
| 2−4t | 4+2t−2t2 | (t2+2)2 |
| −1 | ||
√2∫ | dt | |
| 1−2t |
| √2 | −2 | ||
∫ | dt | ||
| 2 | 1−2t |
| √2 | |
ln|1−2t|+C | |
| 2 |
| √4+2x−2x2 − 2 | ||
t= | ||
| x |
| 4−2√4+2x−2x2 | ||
−2t = | ||
| x |
| x+4−2√4+2x−2x2 | ||
1−2t = | ||
| x |
| √2 | x+4−2√4+2x−2x2 | |||
= | ln| | | + C | ||
| 2 | x |