| ||||||||
limn→∞ | 5n2 gdzie 5n2 jest to potęga do całego wyrażenia w nawiasie | |||||||
| (4n3−3)+8 | 8 | |||
limn→∞( | )5n2=limn→∞(1+ | )5n2= | ||
| 4n3−3 | 4n3−3 |
| 1 | ||||||||
=limn→∞(1+ | )5n2= | |||||||
|
| 1 | ||||||||
limn→∞(1+ | )4n3−38*84n3−3*5n2= | |||||||
|
| 40n2 | ||
=elimn→∞( | )=e0=1 | |
| 4n3−3 |
| 1 | ||
limt→∞(1+ | )t=e | |
| t |
| 4n3−3 | ||
W naszym wypadku t= | ||
| 8 |
| 4n3−3 | 8 | |||
5n2= | * | *5n2 | ||
| 8 | 4n3−3 |
| 1 | ||||||||
granica (1+ | )4n3−38 wynosi e przy n→∞ | |||||||
|
| 1 | ||||||||
[(1+ | )4n3−38]84n3−3*5n2= | |||||||
|
| 40n2 | ||
e do potęgi{lim n→∞ | }=e0=1 | |
| 4n3−3 |
| 1 | ||||||||
granica (1+ | )4n3−38 wynosi e przy n→∞ | |||||||
|
| 1 | ||||||||
[(1+ | )4n3−38]84n3−3*5n2= | |||||||
|
| 40n2 | ||
e do potęgi{lim n→∞ | }=e0=1 | |
| 4n3−3 |
| 8 | 40n2 | |||
w wykładniku potęgi zostaje ci | *5n2 czyli | |||
| 4n3−3 | 4n3−3 |
| 40n2 | ||
a granica limn→∞ | =0 | |
| 4n3−3 |