| 1 | ||
b) f(x) = | ||
| x + 3 |
| −1 | ||
f'(x)=−1(x+3)−2 skąd f'(0)= | ||
| 9 |
| 2 | ||
f"(x)=−1*(−2)(x+3)−3, skąd f''(0)= | ||
| 27 |
| −6 | ||
f'"(x)=−1*(−2)*(−3)(x+3)−4, skąd f"'(0)= | ||
| 81 |
| 1 | ||
f(0)= | ||
| 3 |
| 1 | −19 | 227 | −681 | |||||
(x+3)−1= | + | x+ | x2+ | x3+...Biorąc stosunek | ||||
| 3 | 1! | 2! | 3! |
| an+1 | ||
po uproszczeniu otrzymujemy | ||
| an |
| an+1 | −1−n | |||
I | I=I | I→1, gdy n→∞ | ||
| an | n+1 |
| 1 | 1 | 1 | 1 | −x | ||||||
b) | = | * | = | ∑n=0∞ ( | )n | |||||
| x+3 | 3 | 1−(−x/3) | 3 | 3 |