| 1 | ||
1) f(x)=lnx ; x∊(0;∞) wiem, ze pochodna to | ale jak to rozpisac z definicji ![]() | |
| x |
| f(x0+Δx)−f(x0) | ln(x+Δx)−lnx | |||
czyli podstawic do f'(x0)= lim | = lim | |||
| Δx | Δx |

nie wiem czy tak:(
| f(x+h)−f(x) | ln(x+h)−lnx | ln(1+h/x) | ||||
f'(x)=lim (h→0) | = lim (h→0) | = lim (h→0) | = | |||
| h | h | h |
| 1 | ||
h=lim (z→∞) | ||
| z |
| ln(x+h)−lnx | 1 | |||
lim (h→0) | = ln[(ex−1)] = x−1 ln e= x−1 = | . | ||
| h | x |