sprawdzenie
ema: Sprawdzenie:
1.Rozwiaz uklad nierownosci:
(x−3)
2<x
2≤( x+4)
2
odp.wyszlo mi x∊(−2,
∞)
2. Napisz rownianie okregu ktorego srednica jest odcinek AB gdzie A(−1,3) B=(1,−1)
odp (x+1)(y−2)=36
3.Oblicz wartosc wyrazenia
√(x−y)(x+y)(x2−y2)
dla x=
√5 i y=
√3
odp. = 4
4.wyznacz liczbe odwrotna od liczy 5−2
√6 i zapisz w najprostszej postaci
odp. 5+2
√6
Moglby ktos spr?
31 maj 14:16
tim: 3. A nie
√4 = 2?
31 maj 14:27
tim: 4. Dobrze.
31 maj 14:29
ema: tak pierwiastek z 4

jednak dobrze sie spytac ,dzieki
31 maj 14:32
AS: Zad 1. Odp. poprawna: (3/2,∞)
Lewa strona nierówności ma rozwiązanie: x > 3/2
Prawa strona nierówności ma rozwiązanie: X ≥ −2
częścią wspólną jest x > 3/2
Łatwo sprawdzić,że x = 0 nie spełnia układu nierówności
Zad. 2 Odp. poprawna: x2 + (y − 1)2 = 5
Środek okręgu, S(0,1) , promień r = √5
Zad.4 1
Liczba odwrotna: −−−−−−−−−
5 − 2*√6
Po przemnożeniu licznika i mainownika przez 5 + 2*√6
otrzymamy 5 + 2*√6
31 maj 15:20
ema: z.1
tak wyszlo mi ze x>3/2 i ze x≥ −2 tylko nei wiedzialam jak zapisac

to razem
z.2 racja , widze blad u siebie

z4. tak tez zrobilam

Dziekuje
31 maj 15:26
AS: Ema − podobasz mi się za to że sama próbujesz dość do wyniku.
31 maj 19:25