| x | π | |||
1 − sin(x) = 2cos2( | + | ) | ||
| 2 | 4 |
| x | π | ||
+ | = t ⇒ dx = 2dt | ||
| 2 | 4 |
| π | ||
sin( | ) = 1 | |
| 2 |
| π | ||
sin( | ) − sin(x) = | |
| 2 |
| x − y | x + y | |||
[korzystamy ze wzoru sin(x) − sin(y) = 2sin( | )cos( | )] = | ||
| 2 | 2 |
| π | x | π | x | |||||
2sin( | − | )cos( | + | ) = | ||||
| 4 | 2 | 4 | 2 |
| π | π | x | π | x | ||||||
2sin( | − | + | )cos( | + | ) = | |||||
| 2 | 4 | 2 | 4 | 2 |
| π | x | π | x | π | x | |||||||
2cos( | + | )cos( | + | ) = 2cos2( | + | ) | ||||||
| 4 | 2 | 4 | 2 | 4 | 2 |
| 1+sinx | 1+sinx | |||
∫ | dx=∫ | dx i rozbić na dwie całki. | ||
| 1−sin2x | cos2x |