matematykaszkolna.pl
rozklad na ulamki proste ania: Rozłóż na ułamki proste funkcje f=(x3−3x2+2x−1)/(x4−2x3+2x2−2x+1)
19 gru 20:57
M:
20 sty 18:13
Mariusz: x4−2x3+2x2−2x+1 = 0 x4−2x3+x2+x2−2x+1 = 0 x2(x2−2x+1)+1(x2−2x+1) = 0 (x2+1)(x2−2x+1) = 0 (x2+1)(x−1)2
x3−3x2+2x−1 (x3−3x2+3x−1)−x 

=

(x2+1)(x−1)2 (x2+1)(x−1)2 
x3−3x2+2x−1 x−1 x 

=


(x2+1)(x−1)2 x2+1 (x2+1)(x−1)2 
2x = (x2+1)−(x−1)2
x3−3x2+2x−1 x−1 12x 

=



(x2+1)(x−1)2 x2+1 2(x2+1)(x−1)2 
x3−3x2+2x−1 x−1 1(x2+1)−(x−1)2 

=



(x2+1)(x−1)2 x2+1 2(x2+1)(x−1)2 
x3−3x2+2x−1 x−1 11 11 

=



+


(x2+1)(x−1)2 x2+1 2(x−1)2 2x2+1 
x3−3x2+2x−1 12x−1 11 

=




(x2+1)(x−1)2 2x2+1 2(x−1)2 
24 sty 00:25