matematykaszkolna.pl
ciagi liczbowe ola: Suma n kolejnych poczatkowych wyrazow nieskonczonego ciagu (an) wyraza sie wzorem Sn=2n2−4n.wykaz,ze a6+a7=40
15 gru 18:58
Artur_z_miasta_Neptuna: S7 = .... wyznacz S5 = ... wyznacz zauważ, że S7 = a1+a2+a3+a4+a5 +a6+a7 = S5 + a6+a7 a więc: a6+a7 = ... czemu się równa
15 gru 18:59
123: Nie wiem czy to prawidłowe obliczenia, ale ja bym to zrobił tak: S1 = 2 * 12 − 4 S1 = −2 ⇒ a1 = −2 S2 = 2 * 22 − 4*2 S2 = 0 S2 = a1 + a2 0 = −2 + a2 a2 = 2 r = 4 a6 = a1 + 5 * 4 a6 = −2 + 20 = 18 a7 = a1 + 6 * 4 = 22 a6 + a7 = 18 + 22 = 40
15 gru 19:02
PW: @123: Założenie, że ciąg jest arytmetyczny, nie wynika z treści zadania.
15 gru 20:00
PW: Precyzuję: wynika, ale nie widać tego "gołym okiem", a 123 założył z góry, że tak jest i obliczył r=a2−a1. To tylko przypadek, że w tym zadaniu ciąg był arytmetyczny. Można podać bez trudu inny wzór na Sn, przy którym rozumowanie Artura okaże się tak samo dobre, a 123 − nie.
15 gru 20:48