| 1 | ||
1. Zbadaj ekstrema y=xln | . Naszkicuj wykres funkcji.
| |
| x2 |
| 1 | 1 | 1 | 2 | 1 | ||||||
f'(x)=(x)'ln | +x(ln | )'=ln | +x*x2*(− | )=ln | −2
| |||||
| x2 | x2 | x2 | x3 | x2 |
| 1 | ||
f'(x)>0 ⇔ ln | −2>0
| |
| x2 |
| 1 | ||
ln | >2
| |
| x2 |
| 1 | ||
ln | >lne2, e>1
| |
| x2 |
| 1 | |
>e2
| |
| x2 |
| 1 | 1 | |||
(x− | )(x+ | )<0
| ||
| e | e |
| 1 | −1 | |||
Zarówno w | jak i | pochodna zmienia znak, więc są to ekstrema.
| ||
| e | e |
| arctgx | arctgx | π2 | ||||
a=lim( | ), x→+∞; lim( | )=[ | ]=0
| |||
| x | x | ∞ |
| π | ||
b=lim(arctgx), x→+∞; lim(arctgx)= | ||
| 2 |
| π | ||
asyptota prawostronna: y= | ||
| 2 |
| arctgx | arctgx | −π2 | ||||
a=lim( | ),x→−∞; lim( | )=[ | ]=0
| |||
| x | x | ∞ |
| π | ||
b=lim(arctgx), x→−∞, lim(arctgx)=− | ||
| 2 |
| 2ln(cosx) | −21cosx*sinx | −tgx | ||||
lim[2(x)−2ln(cosx)]=lim | =lim | =lim | =
| |||
| x2 | 2x | x |
| −1 | ||
lim | =−1
| |
| cos2x |
| sinx | ||
4.Policz pochodną f(x)=3√x sinx=(3√3)' sinx+(sinx)' 3√x= | +3√x cosx | |
| 33√x2 |