| 3 | 1 | |||
= (x/div> | − x/div> | |||
| 2 | 2 |
| 1 | 3 | |||
(−x/div> | )'*(x/div> | )'= | ||
| 2 | 2 |
| 1 | −1 | 3 | 1 | |||||
( | −x/div> | )* | x/div> | |||||
| 2 | 2 | 2 | 2 |
| 1 | ||
√x = | ||
| 2√x |
| 1 | ||
√x = | ||
| 2√x |
| 1 | 3x2 | |||
( | * (3x2}= | |||
| 2√x | 2√x |
| 1 | ||
3x2 − | = | |
| 2√x |
| 3x2−1 | ||
= | ||
| 2√x |
| 1 | ||
Ale i tak mi się wynik nie zgadza bo na początku ma być | a w mianowniku √x3−x | |
| 2 |
| 3 | 1 | 3 | 1 | 3x−1 | ||||||
[x3/2−√x]'= | x1/2 − | = | √x− | = | ||||||
| 2 | 2√x | 2 | 2√x | 2√x |
| 1 | x−1+√x*2√x | 3x−1 | ||||
(x√x−√x)'=[ √x(x−1)]'= | *(x−1)+ √x*1= | = | ||||
| 2√x | 2√x | 2√x |
| 1 | 3x2−1 | |
| 2 | √x3−x |
| 1 | 3x2−1 | ||
b) Odp: | |||
| 2 | √x3−1 |
no i zobacz co napisałeś/aś na początku postu
Zupełnie coś innego
| 1 | 3x2−1 | |||
f'(x)= | *( x3−x)' = | i bingo ![]() | ||
| 2√x3−x | 2√x3−x |
| 1 | ||
(x)'= | ||
| 2√x |
| 3x2 | ||
= | ||
| 2√x |
| 3 | ||
(√x3)' = xspan style="font-family:times; margin-left:1px; margin-right:1px">32= | x1{2} | |
| 2 |
| 1 | 1 | 1 | ||||
(√x) = x/div> | = | x− | ||||
| 2 | 2 | 2 |