| x+1 | ||
log1/3| | | ≤ 0 | |
| x |
| x+1 | |
≠0 | |
| x |
| x+1 | ||
log1/3| | | ≤ log1/31 | |
| x |
| x+1 | ||
| | | ≥ 1 | |
| x |
| x+1 | |
≥ 1 → x ≥ 0 | |
| x |
| x+1 | 1 | ||
≤ − 1 → x ≤ − | |||
| x | 2 |
druga częśc rozwiązania błędna ... np. x=−1
| x+1 | |
= 0 ![]() | |
| x |
| x+1 | 1 | ||
= | |||
| x | 2 |
| x+1 | 1 | |||
| | | = |1+ | | | ||
| x | x |
| 1 | 1 | |||
|1+ | | = 1+ | > 1 | ||
| x | x |
| 1 | ||
więc log1/3 (1+ | ) < 0 | |
| x |
| 1 | 1 | 1 | 1 | |||||
|1+ | | = −1− | > 1 ⇔ −2 > | ⇔ x>− | |||||
| x | x | x | 2 |
| x+1 | ||
2) błąd | ≤ −1 <−−− dobrze ... ale pamiętaj 'x'<0 ... więc | |
| x |
| x+1 | |
≤ −1 ⇔ x+1 ≥ −x | |
| x |
| x +1 | |
≥ 1 | |
| x |
| x +1 | |
≤ −1 | |
| x |
| 1 | ||
x≥ − | ||
| 2 |
| 1 | ||
x∊ <− | ;0) | |
| 2 |
| 1 | ||
x∊ <− | ;0)(0;∞) | |
| 2 |
| 1 | ||
x∊(−∞;−1)(−1;− | > | |
| 2 |
Dzięki