matematykaszkolna.pl
zad OLA: oblicz granice ciągu ! lim 5n−27n−22n+3 te 2n+ 3 to potęga tego ułamka coś mi nie wychodzi :<
10 gru 19:01
OLA: tam w mianowniku powinno byc: 7n−1 sorki !
10 gru 19:02
mm: Mi wyszło 57 emotka
10 gru 19:09
mm: Wyłączyłam n przed nawias w liczniku i mianowniku, w liczniku wyszło: 5− 4n*8n a w mianowniku 7−1n, licznik rozbijam i mam dwa ułamki: 4nn*8n, drugi dąży do zera, a więc cały iroczyn dąży do zeraemotka dalej powinnaś sobie poradzić.
10 gru 19:12
OLA: ma wyjsc 0
10 gru 19:14
OLA:
10 gru 19:40
Krzysiek: masz symbol 0 to nie jest symbol nieoznaczony, granica to zero
10 gru 19:43
OLA: a nie powinnam zrobic tego metodą na liczbe e?
10 gru 20:40
asdf: Mi się zdaje, że tak:
 5n − 2 7n − 2 − 2n 
limn→ (

)2n+3 = limn→ (

) potęgę narazie
 7n−2 7n − 2 
zostawię...
 −2n 1 1 
1 +

= (1 +

) = (1+

)
 7n − 2 
1 

−2n(7n−2) 
 
1 

−14n2 + 4n 
 
 1 
limn→ (1+

)2n+3 =
 
1 

−14n2 + 4n 
 
 1 
limn→ [ (1+

)1/(−14n2+4n) ] (−14n2+4n)(2n+3) =
 
1 

−14n2 + 4n 
 
i tym dalej rozkładać, wyjdzie [e1]{−14n2+4n)(2n+3), ale nie jestem pewien mojego zadania, dobrze jakby ktoś to sprawdził, bo możliwe, że napisałem bzdury emotka
10 gru 20:52
Krzysiek: źle asdf, wzór: limn→ (1+an)1/an=e działa tylko wtedy gdy an →0 a tutaj tak nie jest. po drugie pomyłeś się po pierwszej równości −2n/(7n−2) ≠1/(1/(−2n(7n−2)))=−2n(7n−2)
10 gru 21:27