https://matematykaszkolna.pl/strona/1358.html
| n(n+1)(2n+1) | ||
Albo skorzystać z tego, że k=1n∑k2 = | i wtedy | |
| 6 |
| 2n(2n+1)(4n+1) | ||
∑(2k − 1)2 = k=12n∑(k)2 − k=1n∑(2k)2 = | − 4k=1n∑k2 = | |
| 6 |
| 2n(2n+1)(4n+1) | n(n+1)(2n+1) | n | ||||
= | − 4 * | = | (8n2 + 6n + 1 − 2(2n2+3n+1))= | |||
| 6 | 6 | 3 |
| 1 | ||
= | n(4n2 − 1) | |
| 3 |
)