Problem z pochodną
QWERT: Problem z pochodną: √ x+1x−1
3 gru 13:01
QWERT:
3 gru 13:07
MQ: Pochodna funkcji złożonej
g(f(x))'=g(y)'*f(x)', gdzie y=f(x)
3 gru 13:12
QWERT: | | −1 | |
tak robię ale dochodzę do |
| a w odpowiedzi jest |
| | | |
| | −1 | |
|
| i nie wiem jak do tego dojść.. |
| | (x−1){√x2−1} | |
3 gru 13:37
MQ: Chyba ci wyszło:
a to jak umiejętnie przekształcisz da ci wynik "książkowy"
3 gru 13:40
QWERT: a no tak mi wyszo własnie

a podpowiesz mi jak umiejetnie to przekształcić?
3 gru 13:42
QWERT:
3 gru 14:10
Mila:
Mianownik:
| | x+1 | | (x+1)*(x−1)2 | |
√ |
| *(x−1)*(x−1)=(x−1)√ |
| =(x−1)√(x+1)(x−1)=(x−1)√x2−1 |
| | x−1 | | x−1 | |
3 gru 16:37
QWERT: ale (x−1)2 to nie jest (x−1)(x+1)
?
5 gru 15:18
QWERT: nic nie mowilem, nie wazne
5 gru 15:20
Mila: pod pierwiastkiem jest:
| (x+1)(x−1)2 | |
| =(x+1)(x−1)=x2−1 |
| x−1 | |
5 gru 15:22