dziekuje
| cos(yx) | ||
q'(x) = sin(yx) g(x) = − | ||
| y |
| x*cos(yx) | x*cos(xy) | |||
E1 = − | |01 − ∫011*sin(yx) dx = − | |01 + U{cos(xy}}{y}|01 = | ||
| y | y |
| cos(xy) | cosy | cos0 | |||
*(1−x) |01 = | *(1−1) − | *(1−0) = | |||
| y | y | y |
| 1 | 1 | |||
0 − | *1 = − | |||
| y | y |
| 1 | π | |||
E = −∫π2π | dy = −ln|y| |π2π = −ln(2π) +lnπ = ln | = ln12 | ||
| y | 2π |
| x*cos(xy) | cos(xy) | |||
E1 = − | + ∫ | dx = | ||
| y | y |
| x*cos(xy) | ycos(xy) | |||
− | + ∫ | dx = | ||
| y | y2 |
| x*cos(xy) | 1 | |||
− | + | ∫ ycos(xy) dx = | ||
| y | y2 |
| x*cos(xy) | 1 | |||
− | + | *sin(xy) | ||
| y | y2 |
| 1*cosy | 1 | 0*cos0 | 1 | |||||
− | + | *siny − [ − | + | *sin0] = | ||||
| y | y2 | y | y2 |
| 1*cosy | 1 | |||
− | + | *siny | ||
| y | y2 |
| cosy | 1 | |||
E = ∫(− | + | *siny) dy w granicach od π do 2π = | ||
| y | y2 |
| cosy | 1 | |||
−∫( | dy +∫ | *siny dy w granicach od π do 2π = | ||
| y | y2 |
| 1*cosy | ||
E11 = ∫( | dy | |
| y |
| 1 | ||
E = −sinyy − ∫ sinyy2 dy+ ∫ | *siny dy = −sinyy |π2π = | |
| y2 |
| sin2π | sinπ | |||
− | + | = 0−0=0 | ||
| 2π | π |
| x*cos(xy) | cos(xy) | |||
E1 = − | + ∫ | dx = | ||
| y | y |
| x*cos(xy) | ycos(xy) | |||
− | + ∫ | dx = | ||
| y | y2 |
| x*cos(xy) | 1 | |||
− | + | ∫ ycos(xy) dx = | ||
| y | y2 |
| x*cos(xy) | 1 | |||
− | + | *sin(xy) | ||
| y | y2 |
| 1*cosy | 1 | 0*cos0 | 1 | |||||
− | + | *siny − [ − | + | *sin0] = | ||||
| y | y2 | y | y2 |
| 1*cosy | 1 | |||
− | + | *siny | ||
| y | y2 |
| cosy | 1 | |||
E = ∫(− | + | *siny) dy w granicach od π do 2π = | ||
| y | y2 |
| cosy | 1 | |||
−∫( | dy +∫ | *siny dy w granicach od π do 2π = | ||
| y | y2 |
| 1*cosy | ||
E11 = ∫( | dy | |
| y |
| 1 | ||
E = −sinyy − ∫ sinyy2 dy+ ∫ | *siny dy = −sinyy |π2π = | |
| y2 |
| sin2π | sinπ | |||
− | + | = 0−0=0 | ||
| 2π | π |