| 2x+3 | ||
∫ | dx | |
| x2−5 |
| dx | ||
∫ | ||
| 3√5x |
| 2x | 1 | |||
= ∫ | dx + 3∫ | dx | ||
| x2−5 | x2−5 |
| 1 | ||
= | ∫x−1/3 dx | |
| 3√5 |
najpierw tego https://matematykaszkolna.pl/strona/2110.html (całka 2)
potem tego https://matematykaszkolna.pl/strona/2128.html (całka 1.1)
a na końcu tego https://matematykaszkolna.pl/strona/2306.html (całka 2.2)
| 2x+3 | ||
∫ | dx = | |
| x2−5 |
| 2x | dx | |||
∫ | dx +3∫ | = | ||
| x2−5 | x2−5 |
| 2x | 3 | dx | |||||||||||||
∫ | dx + | ∫ | = | ||||||||||||
| x2−5 | 5 |
|
| 2x | 3 | dx | |||||||||||||
∫ | dx + | ∫ | |||||||||||||
| x2−5 | 5 |
|
| x | dx | ||
= t => | = dt | ||
| √5 | √5 |
| du | 3{√5} | dt | ||||
∫ | + | ∫ | = | |||
| u | 5 | t2 −1 |
| 3{√5} | ||
ln IuI + | arctgt + C = | |
| 5 |
| 3{√5} | x | |||
ln (x2−5) + | arctg | + C | ||
| 5 | √5 |
| dx | ||
po pierwsze: | =dt | |
| √5 |
| dt | ||
więc było by: 3√5∫ | ||
| t2 −1 |
| dt | ||
po drugie: ∫ | ≠arctgt+C | |
| t2−1 |
| dt | ||
∫ | =arctgt+C | |
| t2 +1 |
| x2 | x | |||
żle; | = ( | )2 | ||
| 5 | √5 |
| 1 | ||
poza tym (arctgt)' = | ||
| 1+t2 |
| 1 | ||
i wobec tego ∫ | dt ≠ arctgx | |
| t2−1 |
| 1 | 1 | A | B | ||||
= | = | + | = | ||||
| x2−5 | (x−√5)(x+√5) | x−√5 | x+√5 |
| A(1+√5)+B(1−√5) | |
| (x−√5)(x+√5) |
| 1 | √5 | |||
A = | = | |||
| 2√5 | 10 |
| √5 | ||
B = − | ||
| 10 |
| 1 | √5 | √5 | ||||
∫ | dx = ∫ | dx − ∫ | dx = | |||
| x2−5 | 10(x−√5) | 10(x+√5) |
| √5 | |
*[ ln|x−√5| − ln|x+√5| ] +C = | |
| 10 |
| √5 | x−√5 | ||
*ln| | |+C | ||
| 10 | x+√5 |
| 1 | A | B | |||
= | + | ||||
| (x − √5)(x + √5) | x − √5 | x + √5 |
| 1 | ||
dla x = −√5: 1 = −2B√5, B = − | ||
| 2√5 |
| 1 | ||
dla x = √5: 1 = 2A√5, A = | ||
| 2√5 |