Zrobię jak wrócę
bo Ci powiem, ze rozwiązania co najmniej 'nieciekawe' będą
| 1 | ||
biorę podstawienie y = (z + | ) i otrzymuje : | |
| 6 |
| 1 | 1 | 1 | ||||
−2(z + | )3 + (z + | )2 + 8(z + | ) − 31 = 0 | |||
| 6 | 6 | 6 |
| 1 | 1 | 1 | 1 | 1 | 8 | |||||||
−2(z3 + | z2 + | z + | ) + z2 + | z + | + 8z + | −31 = 0 | ||||||
| 2 | 12 | 216 | 3 | 36 | 6 |
| 2 | 1 | 1 | 1 | 48 | 1116 | |||||||
−2z3 − z2 − | z − | + z2 + | z + | + 8z + | − | |||||||
| 12 | 108 | 3 | 36 | 36 | 36 |
| 2 | 4 | 96 | 1 | 3 | 144 | 3348 | ||||||||
−2z3 − | z + | z + | z − | + | + | − | ||||||||
| 12 | 12 | 12 | 108 | 108 | 108 | 108 |
| 49 | 1601 | |||
−2z3 + | z − | = 0 | ||
| 6 | 54 |
| 49 | 1601 | |||
z3 − | + | = 0 | ||
| 12 | 108 |
| 1601 | ||
u3 + v3 = − | ||
| 108 |
| −117649 | ||
u3 * v3 = | ||
| 46656 |
| 1601 | 117649 | |||
z2 + | z − | = 0 | ||
| 108 | 46656 |
| 2563201 | 117649 | 2445552 | 1296 * 1887 | |||||
Δ = | + | = | = | |||||
| 11664 | 11664 | 11664 | 11664 |
| 36√1887 | ||
√Δ = | ||
| 108 |
| −1601 ± 36√1887 | 1 | |||
z = | = | (−1601 ± 36√1887) | ||
| 108 * 2 | 63 |
| 1 | ||
z = | (3√−1601 + 36√1887 + 3√−1601 − 36√1887) | |
| 3 |
| 1 | ||
czyli y = | (1 +23√−1601 + 36√1887 + 23√−1601 − 36√1887)) ≈ −2,8336 | |
| 6 |
| 6 + 6y | ||
P = (8 + 2y)x2 − 6(1+y) + (y2 − 5) = // dla Δ = 0 // = (8 + 2y)(x − | )2 | |
| 2(8 + 2y) |
| 6+6y | ||
= (√8 + 2y*x − | )2 | |
| 2√8 + 2y |
| 6 + 6y | |
≈ −3,6998 | |
| 2√8 + 2y |
| 6+6y | ||
(x2 − 3x + y)2 − (√8 + 2y*x − | )2 = 0 | |
| 2√8 + 2y |
| 6+6y | ||
(x2 − 3x + y − √8 + 2y*x + | )(x2 − 3x + y + √8 + 2y*x | |
| 2√8 + 2y |
| 6+6y | ||
− | ) = 0 | |
| 2√8 + 2y |
| 6+6y | ||
(x2 − 3x + y − √8 + 2y*x + | ) = 0 | |
| 2√8 + 2y |
| 6+6y | ||
(x2 − (√8 + 2y + 3)x + (y + | ) = 0 | |
| 2√8 + 2y |
| 6+6y | ||
Δ = (√8 + 2y + 3)2 − 4(y + | ) > 0 ≈ 20,4964 + 26,336 = 46,83> 0 | |
| 2√8 + 2y |
| 6+6y | ||
√Δ = √((√8 + 2y) + 3)2 − 4(y + | ) ≈ 6,8432 | |
| 2√8 + 2y |
| |||||||||||
x1 = | ≈ 5,68525 | ||||||||||
| 2 |
| |||||||||||
x2 = | ≈ −1,1579 | ||||||||||
| 2 |
| 6+6y | ||
x2 − 3x + y + √8 + 2y*x − | = 0 | |
| 2√8 + 2y |
| 6+6y | ||
x2 + (√8 + 2y − 3)x + (y − | ) = 0 | |
| 2√8 + 2y |
| 6+6y | ||
Δ = (√8 + 2y −3)2 − 4(y − | ) ≈ 2,1707 − 3,4648= −1,2941 < 0 − brak | |
| 2√8 + 2y |
| 6+6y | ||
(x2 − 3x + y − √8 + 2y*x + | )(x2 − 3x + y + √8 + 2y*x | |
| 2√8 + 2y |
| 6+6y | ||
− | ) ≥ 0 | |
| 2√8 + 2y |
| 6+6y | ||
(x2 − (√8 + 2y + 3)x + (y + | ) ≥ 0 | |
| 2√8 + 2y |