| 3√(n3+4n2)2+n3√n3+4n2+n2) | ||
=(3√n3+4n2−n)* | = | |
| 3√(n3+4n2)2+n3√n3+4n2+n2 |
| n3+4n2−n3 | ||
= | = | |
| 3√(n3+4n2)2+n3√n3+4n2+n2 |
| 4n2 | ||
= | = | |
| 3√n3(1+4/n)*n3(1+4/n)+n3√n3(1+4/n)+n2 |
| 4n2 | ||
= | = | |
| n2(3√(1+4/n)2+3√1+4/n)+1) |
| 4 | 4 | ||
→ | dla n→∞ | ||
| 3√(1+4/n)2+3√1+4/n)+1) | 3 |
| 22n+1+9n | 4n*2+9n | |||
2) | = | =dzielę licznik i mianownik przez 4n | ||
| 2n+22n | 2n+4n |
| 2+(9/4)n | |
→∞ dla n→∞ | |
| (1/2)n+1 |