matematykaszkolna.pl
funkcje Magda: Pomózcie... 1. Sprawdź, czy dziedziny funkcji f(x)=2x−3x+4 i g(x)=(2x−3)(x+4) sa równe. 2. Wykonując odpowiednie przesunięcia narysuj wykres funkcji homograficznej f(x)=2xx−1, a następnie podaj charakterystykę tej funkcji. 3. Określ układem nierówności trójkąt o wierzchołkach A=(−1,−3), B=(1,5) C=(5,−1).
20 maj 07:41
Edek: 1. f(x) x≠−4 2x−3x+4≥0 2(x−32)(x+4)≥0 x (−∞, −4) u <32,+∞) g(x) to samo tylko x (−∞, −4> u <32,+∞) wynika że nie śą równe
20 maj 10:09
Bogdan: 1. Już rozwiązanie przez Edka.
 2x 
2. f(x) =

, x ≠ 1
 x − 1 
Dzielimy licznik przez mianownik: 2x : (x − 1) = 2 −2x + 2 −−−−−−− 2
 2x 2 
f(x) =

⇒ f(x) =

+ 2,
 x − 1 x − 1 
 2 
współrzędne wektora przesunięcia hiperboli y =

: p = 1, q = 2
 x 
 2 
Narysuj wykres hiperboli y =

i przesuń go o wektor [1, 2].
 x 
 2x 
Z nowego wykresu odczytasz własności funkcji f(x) =

 x − 1 
3. Napisz równania trzech prostych: prostej z punktami A i B, prostej z punktami A i C oraz prostej z punktami B i C. Sporządź wykresy tych prostych.
20 maj 14:07
Magda: a czy możesz cos więcej napisac mi do 2 tylko nie myśl że czekam na gotowca bo NIE CZEKAm ale z funkcji nic nie wiem nawet nie potrafie odczytac z wykresu jej własności
20 maj 14:20
Magda:
 1 2 
co do 3 zadania to równanie prostej A i B wyszło y=4x+1 A i C y=

x−2

 3 3 
 3 1 
B i C y= −

x+6

czy dobrze i teraz mam poprostu zrobić tabelki do
 2 2 
każdej i narysowac je w układzie współrzędnych tak i to całe zadanie czy jeszcze cos mam okreslac z góry dzieki
20 maj 14:34
Bogdan: Niestety, nie mogę. Trudno, bym tutaj przedstawiał teorię dotyczącą własności funkcji, w tym odczytywania własności funkcji z wykresu. Mogę podać wskazówki, w ostateczności podać pełne rozwiązanie, sprawdzić zamieszczone tutaj rozwiązanie i ustosunkować się do niego, ale o własnościach funkcji dowiedz się sama, chociażby z przykładów podanych w tym portalu w dziale funkcja i jej własności.
20 maj 14:46
Magda: dzieki ale moge liczyc jeszcze na twoją pomoc, postaram sie spróbowac rozwiązać te zadania i odezwe sie dzis bądź jutro jesli nie będę czegos potrafiła ok
20 maj 14:57
Magda: a czy 3 dobrze rozwiązałam
20 maj 14:58
Magda: poedałam niżej jeszcze inne zadnia to juz oststnie pomożesz
20 maj 14:59
Magda: co do zadania 2 to rysunek hiperboli narysowałam tak jak na tej stronie https://matematykaszkolna.pl/strona/157.html tylko teraz nie wiem jak go przesunąc, możesz mi pomóc i czy mógłbys sprawdzić 2 zadanie czy dobrze obliczyłam
21 maj 08:47
Bogdan: rysunek Ad. 2. Podaj własności funkcji f(x), sprawdzę.
21 maj 10:55
Bogdan: rysunek Ad. 3. Równania prostych dobrze napisałaś. W zadaniu chodzi o układ nierówność opisujących trójkąt. Jest to układ trzech nierówności: 1. y ≤ 4x + 1
 1 2 
2. y ≥

x − 2

 3 3 
 3 1 
3. y ≤ −

x + 6

 2 2 
21 maj 11:10
Magda: D=R\{1} ZW=R\{2} M zerowe = −2 funkcja jest różnowartościowa, nieparzysta i nie jest okresowa dobrze tylko nie potrafię okreslić monotonicznosci co do 2 zadania to najpierw mam narysowac ten rysunek z tej strony https://matematykaszkolna.pl/strona/157.html a później ten co podałeś mam to zrobic na jeednym rysunku czy wystarczy tylko tak jak ty narysowałeś a do 3 to odpowiedź to jest ten układ tak nic juz nie trzeba rozwiązywać z góry wielkie dzięki
21 maj 11:24
Bogdan: Ad. 2. Poprawiam i uzupełniam Twoje odpowiedzi: D = R \ {−1}. Funkcja nie jest nieparzysta. Monotoniczność: funkcja jest malejąca dla x ∊ (−, −1), (−1, +). Znak funkcji: a) funkcja jest ujemna: f(x) < 0 dla x ∊ (−2, −1), b) funkcja jest dodatnia: f(x) > 0 dla x ∊ (−, −2) ∪ (−1, +) Asymptoty: a) pionowa: x = −1 b) pozioma: y = 2 Wystarczy narysować tak, jak ja narysowałem. Ad. 3. To jest ten układ, nie trzeba nic więcej dodawać.
21 maj 11:37
Magda: dziękuję bardzo a zbiór wartości i miesca zerowe dobrze określiłam czy nie ma wogóle dziękuję emotka
21 maj 11:39
Bogdan: ZW i miejsce zerowe dobrze podałaś.
21 maj 11:43
Magda: dzięki emotka
21 maj 11:45