| 1 | ||
an+1 = an − | ||
| n(n+1) |
| 1 | ||
ak+1 = − | + ak | |
| k(k+1) |
| 1 | ||
ak+1−ak = − | / ∑k=1..n | |
| k(k+1) |
| 1 | 1 | 1 | 1 | |||||
ak+1−a1 = ∑k=1..n − | = ∑k=1..n ( | − | ) = | −1 | ||||
| k(k+1) | k+1 | k | n+1 |
| 1 | ||
an = | + 1. | |
| n |
| 1 | ||
ak+1 = − | + ak | |
| k(k+1) |
| 1 | 1 | |||
ak+1 − ak = | − | |||
| k+1 | k |
| 1 | ||
k = 1: a2 − a1 = | − 1 | |
| 2 |
| 1 | 1 | |||
k = 2: a3 − a2 = | − | |||
| 3 | 2 |
| 1 | 1 | |||
k = 3: a4 − a3 = | − | |||
| 4 | 3 |
| 1 | 1 | |||
k = n−2: an−1 − an−2 = | − | |||
| n−1 | n−2 |
| 1 | 1 | |||
k = n−1: an − an−1 = | − | |||
| n | n−1 |
| 1 | ||
an − a1 = | − 1 | |
| n |
| 1 | ||
an = | +1. | |
| n |