| 120 | ||
sinus kata rozwarcia tego stozka. odp. | ||
| 169 |
| 16 | ||
4πx2= | πr2 | |
| 9 |
| 2 | ||
x= | r | |
| 3 |

| 16 | ||
4πr2= | πR2⇔ | |
| 9 |
| r | 2 | ||
= | =tgβ w ΔPOA | ||
| R | 3 |
| sinβ | 2 | 2 | ||||
tgβ= | = | ⇔sinβ= | cosβ | |||
| cosβ | 3 | 3 |
| 2 | 3 | |||
( | cosβ )2+cos2β=1 stąd cosβ= | |||
| 3 | √13 |
| 2 | ||
sinβ= | ||
| √13 |
| 2 | 3 | 12 | ||||
sinA=2* | * | = | ||||
| √13 | √13 | √13 |
| 12 | ||
cosα=sinA= | obliczam sinα: sin2α+cos2α=1 | |
| √13 |
| 12 | 5 | |||
sinα=1−( | )2⇔sinα= | |||
| √13 | 13 |
| 5 | 12 | |||
2sinα*cosα=sinS=2* | * | |||
| 13 | √13 |
| 120 | ||
sin∡S= | ||
| 169 |
| 12 | ||
sinA= | ||
| 13 |
| 12 | ||
cosα= | ||
| 13 |
| 12 | ||
sin2α=1−( | )2 | |
| 13 |
| 144 | ||
sin2α=1− | ||
| 169 |
| 25 | ||
sin2α= | ||
| 169 |
| 5 | ||
sinα= | ||
| 13 |
| 5 | 12 | |||
sin∡S=sin(2α)=2*sinα*cosα=2* | * | |||
| 13 | 13 |
| 120 | ||
sin∡S= | ||
| 169 |