| 1 | ||
∑∞ n=1 | ||
| n(n+1)(n+2) |
| a | b | c | |||
+ | + | ||||
| n | n+1 | n+2 |
| ⎧ | a+b+c=0 | ||
| zatem musi być: | ⎨ | 3a+2b+c=0 | |
| ⎩ | 2a=1 |
| 1 | ||
a= | ||
| 2 |
| 1 | ||
c= | ||
| 2 |
| 12 | 1 | 112 | |||
− | + | ||||
| n | n+1 | n+2 |
| 1 | 1 | 1 | 1 | 1 | 3 | |||||||
i teraz piszemy Sn= ( | − | + | ) + ( | − | + | )+...+ | ||||||
| 2 | 2 | 2 | 4 | 3 | 8 |
| 1 | ||
Dla zbieżności wystarcza fakt, że jest ograniczony przez szereg zbieżny ∑ | ||
| n2 |
| 1 | ||
∑U{1}{n(n+1)(n+2)≤∑ | ||
| n2 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
(1+ | + | + | +...)−( | + | + | +...)+ | |||||||
| 2 | 2 | 3 | 4 | 2 | 3 | 4 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
+ | ( | + | +...)= | (1+ | )+ | ( | + | +...)+ | ||||||||
| 2 | 3 | 4 | 2 | 2 | 2 | 3 | 4 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
− | −( | + | +...)+ | ( | + | +...)= | (1+ | )− | = | |||||||||||
| 2 | 3 | 4 | 2 | 3 | 4 | 2 | 2 | 2 | 4 |
| 1 | 1 | |||
Tam popraw sobie c, ma być | a nie jak napisałeś 1 | |||
| 2 | 2 |