| sin2x | ||
lim | ||
| √3x+1−1 |
| 0 | ||
masz | , czyli możesz skorzystać z reguły de'Hospitala | |
| 0 |
| sin2x | sin2x | 2x (√3x+1+1) | ||||
lim x→0 | = lim x→0 | * | = | |||
| √3x+1−1 | 2x | √3x+12−1 |
| 2x (√3x+1+1) | 2x (√3x+1+1) | |||
= lim x→0 1* | = lim x→0 | = | ||
| 3x+1−1 | 3x |
| 2 | 4 | |||
= lim x→0 | * (√3x+1+1) = 23*(1+1)= | . ... ![]() | ||
| 3 | 3 |