| 1 | ||
3 ∫ | dx | |
| x 3√x2 |
| 5x+√x−4x3√x | ||
4 ∫ | dx | |
| x |
| 4−x2 | ||
5. ∫ | dx | |
| x√x |
| x2 | ||
7 ∫ | dx | |
| x2+1 |
| x2 | ||
8 ∫ | dx | |
| x2−1 |
| 2x2 | ||
11 ∫ | dx | |
| x3−17 |
| 5x2 | ||
12 ∫ | dx | |
| √x3+3 |
| ln x −2 | ||
13. ∫ | dx | |
| x |
| sin(2√x | ||
14 ∫ | dx | |
| √x |
| ln4x | ||
15. ∫ | dx | |
| x |
| xa+1 | ||
∫xa dx = | +C | |
| a+1 |
| 1 | ||
dla a=−1 ∫ | dx =ln|x| +C | |
| x |
| x2 | 1 | |||
7) | =1− | i korzystasz z funkcji arctg | ||
| x2+1 | x2 +1 |
| x2 | 1 | |||
8) | =1+ | |||
| x2−1 | x2 −1 |
| 1−sin2 x | 1 | |||
9)ctg2 x= | = | −1 | ||
| sin2 x | sin2 x |
| 1 | ||
i jeszcze rozwiązać coś takiego ∫ | dx | |
| sin x |