| d | d | d | dxz | dxy | dyz | |||||||
div F =( | + | + | )(xz + xy + yz) = | + | + | = | ||||||
| dx | dy | dz | dx | dy | dx |
| dxz | dAB | |||
wynosi pochodna | czy każda inna w postaci | ? | ||
| dx | dA |
| d | |
(xz) =z | |
| dx |
| d | ||
Czyli mając przykładowo | (5zx) = 5z? | |
| dx |
.
Jeszcze jedno mam takie równanie ale znów pytanie matematyczne nie wnikając co to jest:
| d | d | d | ||||
xi + yi + zk = − grad φ(x,y,z) = ( | i + | j + | k)(φ(x,y,z)) | |||
| dx | dy | dz |
| d | ||
x = | φ(x); | |
| dx |
| d | ||
y = | φ(y); | |
| dy |
| d | ||
z = | φ(z); | |
| z |
| x2 | ||
∫dxd = −∫dφ(x) = | ||
| 2 |
| y2 | ||
∫ydy = −∫dφ(y) = | ||
| 2 |
| z2 | ||
∫zsz = −∫dφ(z) = | ||
| 2 |
| x2 | y2 | z2 | ||||
φ(x,y,z) = − ( | + | + | ) | |||
| 2 | 2 | 2 |
.
| x2 | y2 | z2 | ||||
czyli: φ(x,y,z) =−( | ,+ | ,+ | )+C | |||
| 2 | 2 | z |
| d | ||
−x= | φ(x,y,z) całkujemy po dx obustronnie | |
| dx |
| x2 | ||
φ(x,y,z)=− | +c(y,z) | |
| 2 |
| d | |
φ(x,y,z)= 0+c'(y,z) =−y | |
| dy |
| y2 | ||
czyli: c(y,z)=− | +k(z) | |
| 2 |
| d | d | x2 | y2 | ||||
φ(x,y,z)= = | (− | − | +k(z) ) =k'(z) =−z | ||||
| dz | dz | 2 | 2 |
| z2 | ||
czyli: k(z)=− | +C | |
| 2 |
| x2 | y2 | z2 | ||||
zatem: φ(x,y,z)=−( | ,+ | ,+ | )+C | |||
| 2 | 2 | z |