licznik | ||
Wpisz U{licznik}{mianownik}, a otrzymasz | ||
mianownik |
3x + 5 | 3x + 5 | |||
1. ∫ | dx = ∫ | dx = E | ||
x2 − 3x + 2 | (x − 2)(x − 1) |
3x + 5 | A | B | ||||
= | + | /* (x − 2)(x − 1) | ||||
(x − 2)(x − 1) | x − 2 | x − 1 |
dx | dx | |||
E = 11∫ | − 8∫ | = 11ln|x − 2| − 8ln|x − 1| + C | ||
x − 2 | x − 1 |
3x + 5 | ||
∫ | dx = E | |
x2 + x + 2 |
3x + 5 | 3 |
| 3 | 7 | ||||||||||||||
= | + | ⇒ 3x + 5 = | (2x + 1) + | |||||||||||||||
2x + 1 | 2 | 2x + 1 | 2 | 2 |
3 | 2x + 1 | 7 | dx | |||||
E = | ∫ | dx + | ∫ | = | ||||
2 | x2 + x + 2 | 2 | x2 + x + 2 |
3 | 7 | |||
= | ln(x2 + x + 2) + | A | ||
2 | 2 |
f'(x) | ||
Uwaga: ∫ | dx = ln|f(x)| + C, tutaj wystąpiło: (x2 + x + 2)' = 2x + 1 | |
f(x) |
1 | 7 | |||
x2 + x + 2 = (x + | )2 + | |||
2 | 4 |
dx | 4 | dx | ||||||||||||||||||||||||||||
A = ∫ | = | ∫ | ||||||||||||||||||||||||||||
| 7 |
|
x + 1/2 | √7 | |||
podstawienie: | = t ⇒ dx = | dt | ||
√7 / 2 | 2 |
4 | √7 | dt | 2 | |||||
A = | * | ∫ | = | arctgt + C = | ||||
7 | 2 | t2 + 1 | √7 |
2 | 2x + 1 | |||
= | arctg | + C | ||
√7 | √7 |
3 | 7 | 2 | 2x + 1 | |||||
E = | ln(x2 + x + 2) + | * | arctg | + C = | ||||
2 | 2 | √7 | √7 |
3 | 2x + 1 | |||
= | ln(x2 + x + 2) + √7arctg | + C | ||
2 | √7 |
x3 + 2x − 6 | 5x − 4 | |||
∫ | dx = ∫ (x + 1 + | )dx = | ||
x2 − x − 2 | x2 − x − 2 |
1 | 5x − 4 | 1 | ||||
= | x2 + x + ∫ | dx = | x2 + x + F | |||
2 | (x − 2)(x + 1) | 2 |