| π | ||
Obróć x2+y2=1 o kąt | ||
| 4 |
| π | |
=45o | |
| 4 |
| √2 | ||
sin45o=cos45o= | ||
| 2 |
| √2 | √2 | |||
x'=x* | −y* | |||
| 2 | 2 |
| √2 | √2 | |||
y'=x* | +y* | |||
| 2 | 2 |
| 2x'+√2y | ||
x= | ||
| √2 |
| 2y'+√2x | ||
y= | ||
| √2 |
| 2x'+√2y | 2y'+√2x | |||
( | )2+( | )2=1 −> z tego mi nie wyjdzie dobry wynik ![]() | ||
| √2 | √2 |
| √2 | ||
x= | (x'+y') | |
| 2 |
| √2 | ||
y= | (−x'+y') | |
| 2 |
| √2 | √2 | |||
[ | (x'+y')]2+[ | (−x'+y')]2=1 po przekształceniu i opuszczeniu (') | ||
| 2 | 2 |
| √2 | ||
x'= | (x−y) | |
| 2 |
| √2 | ||
y'= | (x+y)⇔ | |
| 2 |
| √2 | √2 | √2 | ||||
x= | (x'+y')= | x'+ | y' | |||
| 2 | 2 | 2 |
| √2 | √2 | |||
√2y'= | x'+ | y'+y | ||
| 2 | 2 |
| √2 | √2 | √2 | √2 | |||||
y=√2y'− | x'− | y'⇔y=− | x'+ | y | ||||
| 2 | 2 | 2 | 2 |
| √2 | ||
x= | (x'+y') | |
| 2 |
| √2 | ||
y= | (−x'+y') | |
| 2 |
Na zdrowie.