Trivial:
a
n = −na
n−1 − 3
= −n(−(n−1)a
n−2 − 3) − 3
= n(n−1)a
n−2 + 3n − 3
= n(n−1)(−(n−2)a
n−3 − 3) + 3n − 3
= −n(n−1)(n−2)a
n−3 − 3n(n−1) + 3n − 3
= (−1)
3n
3a
n−3 − 3(n
0 − n
1 + n
2)
= (−1)
3n
3(−(n−3)a
n−4−3) − 3(n
0 − n
1 + n
2)
= (−1)
4n
4a
n−4 − 3(−1)
3n
3 − 3(n
0 − n
1 + n
2)
= (−1)
4n
4a
n−4 − 3(n
0 − n
1 + n
2 − n
3)
Zauważamy teraz pojawiający się wzór...
a
n = (−1)
kn
ka
n−k − 3∑
m=0k−1(−1)
mn
m
Podstawiamy n−k = 1 zatem k = n−1.
a
n = (−1)
n−1n
n−1a
1 − 3∑
m=0n−2(−1)
mn
m
| | n! | |
= (−1)nn! − 3∑m=0n−2(−1)m |
| |
| | (n−m)! | |
| | (−1)m | | (−1)n−1 | | (−1)n | |
= (−1)nn! − 3n!(∑m=0n |
| − ( |
| + |
| )) |
| | (n−m)! | | 1! | | 0! | |
| | (−1)m | |
= (−1)nn! − 3n!∑m=0n |
| |
| | (n−m)! | |
| | (−1)n−m | |
= (−1)nn! − 3n!∑m=0n |
| // m ← n−m |
| | m! | |
| | (−1)m | |
= (−1)nn! − 3*(−1)nn!∑m=0n |
| |
| | m! | |
= (−1)
n(n! − 3*!n)