√2 | ||
a)arcsin | + arcctg(−1) | |
2 |
1 | √3 | |||
b)arcctg | +arcos(− | ) | ||
√3 | 2 |
8π | ||
c)arcsin(sin | ||
5 |
2 | 1 | |||
d) sin(arcsin | +arccos | ) | ||
3 | 3 |
3 | 8 | |||
e)cos(arcos | + arcsin | ) | ||
5 | 17 |
2 | 1 | |||
f)tg (arctg | + arccos | ) | ||
3 | 3 |
7π | ||
h) arctg(tg | − arcctg(−1) | |
8 |
√2 | π | π | ||||
a) arcsin | + arcctg(−1) = | + (− | ) = 0 | |||
2 | 4 | 4 |
2 | 2 | |||
arcsin | = α ⇔ sinα = | (RYS) | ||
3 | 3 |
√5 | ||
x2 + 22 = 32 ⇔ x = √5, cosα = | ||
3 |
1 | 1 | 2√2 | ||||
analogicznie: arccos | = β ⇔ cosβ = | ⇒ sinβ = | ||||
3 | 3 | 3 |
2 | 1 | |||
Liczymy: sin(arcsin | + arccos | ) = sin(α + β) = sinαcosβ + cosαsinβ = | ||
3 | 3 |
2 | 1 | √5 | 2√2 | 2 + 2√10 | ||||||
= | * | + | * | = | ||||||
3 | 3 | 3 | 3 | 9 |
3 | 8 | |||
e) w=cos(arccos | +arcsin | ) | ||
5 | 17 |
3 | 8 | 3 | 8 | |||||
arccos | =α i arcsin | =β⇔ | =cosα i | =sinβ | ||||
5 | 17 | 5 | 17 |
8π | ||
arcsin(sin | )= | |
5 |
π | π | |||
główny przedział wartości arcsinus to (− | ; | ) | ||
2 | 2 |
8π | |
jest kątem IV ćwiartki | |
5 |
8π | 2π | π | ||||
sin( | )=sin(2π− | )=−sin | ||||
5 | 5 | 5 |
8π | 2π | 2π | 2π | |||||
arcsin(sin | )=arcsin(−sin | )=−arcsin(sin | )=− | |||||
5 | 5 | 5 | 5 |