| √2 | ||
a)arcsin | + arcctg(−1) | |
| 2 |
| 1 | √3 | |||
b)arcctg | +arcos(− | ) | ||
| √3 | 2 |
| 8π | ||
c)arcsin(sin | ||
| 5 |
| 2 | 1 | |||
d) sin(arcsin | +arccos | ) | ||
| 3 | 3 |
| 3 | 8 | |||
e)cos(arcos | + arcsin | ) | ||
| 5 | 17 |
| 2 | 1 | |||
f)tg (arctg | + arccos | ) | ||
| 3 | 3 |
| 7π | ||
h) arctg(tg | − arcctg(−1) | |
| 8 |
Ło matko, więcej niż 2 przykładów Ci nie zrobię ... Jak sam nie będzie robić to nie ma sensu
studiować ...
| √2 | π | π | ||||
a) arcsin | + arcctg(−1) = | + (− | ) = 0 | |||
| 2 | 4 | 4 |
| 2 | 2 | |||
arcsin | = α ⇔ sinα = | (RYS) | ||
| 3 | 3 |
| √5 | ||
x2 + 22 = 32 ⇔ x = √5, cosα = | ||
| 3 |
| 1 | 1 | 2√2 | ||||
analogicznie: arccos | = β ⇔ cosβ = | ⇒ sinβ = | ||||
| 3 | 3 | 3 |
| 2 | 1 | |||
Liczymy: sin(arcsin | + arccos | ) = sin(α + β) = sinαcosβ + cosαsinβ = | ||
| 3 | 3 |
| 2 | 1 | √5 | 2√2 | 2 + 2√10 | ||||||
= | * | + | * | = | ||||||
| 3 | 3 | 3 | 3 | 9 |
| 3 | 8 | |||
e) w=cos(arccos | +arcsin | ) | ||
| 5 | 17 |
| 3 | 8 | 3 | 8 | |||||
arccos | =α i arcsin | =β⇔ | =cosα i | =sinβ | ||||
| 5 | 17 | 5 | 17 |
| 8π | ||
arcsin(sin | )= | |
| 5 |
| π | π | |||
główny przedział wartości arcsinus to (− | ; | ) | ||
| 2 | 2 |
| 8π | |
jest kątem IV ćwiartki | |
| 5 |
| 8π | 2π | π | ||||
sin( | )=sin(2π− | )=−sin | ||||
| 5 | 5 | 5 |
| 8π | 2π | 2π | 2π | |||||
arcsin(sin | )=arcsin(−sin | )=−arcsin(sin | )=− | |||||
| 5 | 5 | 5 | 5 |