| eiz−e−iz | ||
sinz= | ||
| 2i |
| eiz−e−iz | |
=2
| |
| 2i |
| 4i−2√3i | ||
t1= | =(2−√3)i
| |
| 2 |
| 4i+2√3i | ||
t2= | =(2+√3)i
| |
| 2 |
| ln(2−√3)i | ||
z= | ||
| lni |
| ln(2+√3)i | ||
z= | ||
| lni |
| ln[(2+√3)i] | ||
z1= | =−iln[(2+√3)i] | |
| i |
| ln[(2−√3)i] | ||
z2= | =−iln[(2−√3)i] | |
| i |
| 1 | π | |||
z = | ln(2±√3)ei(π/2+2kπ) = | +2kπ − iln(2±√3). | ||
| i | 2 |
| π | π | |||
sin(z) = sin( | +2kπ − iln(2±√3)) = sin( | − iln(2±√3)) = cos(iln(2±√3)) | ||
| 2 | 2 |
| 1 | 1 | 1 | ||||
= | (e−ln(2±√3)+eln(2±√3)) = | ( | + 2±√3) | |||
| 2 | 2 | 2±√3 |
| 1 | 2−(±√3) | 2 | ||||
= | ( | + 2±√3) = | = 2. | |||
| 2 | 4−3 | 4 |