Udowodnij, żę dla każdego n∊N jest prawdziwa równość
A) 12 +22 : 32 +...+n2 =U {n(n+1)(2n+1)}{6}
B) 13 + 23 + 33 +...+ n3 = U{n2+n)2{4}
| 1*2*3 | ||
L=12= | =1=P | |
| 6 |
| n(n+1)(2n+1) | ||
12+22+32+...+n2= | ||
| 6 |
| (n+1)(n+2)(2n+3) | ||
12+22+32...+n2+(n+1)2= | ||
| 6 |
| n(n+1)(2n+1) | n(n+1)(2n+1)+6(n+1)2 | (n+1)(2n2+7n+6) | ||||
L= | +(n+1)2= | = | ||||
| 6 | 6 | 6 |
| (n+1)(n+2)(2n+3) | ||
= | =P | |
| 6 |