| ||||||||
∀n∊ℕ | ≤4n | |||||||
| ||||||||
(i)n=1 | ≤41 2≤4 | |||||||
| ||||||||
(ii) założenie n∊A tzn | ≤4n | |||||||
| ||||||||
teza | ≤4n+1 | |||||||
| (2n)!(2n+1)(2n+2) | 2n! | 2(n+1)(2n+1) | ||||||||||
= | = | * | |||||||||||
| n!2*(n+1)2 | n! | (n+1)2 |
| 2*(2n+1) | ||
zał.induk.4n* | = nie mam żadnego pomysłu na dokończenie dowodu?! | |
| (n+1) |
| (2n)! * (2n + 1)(2n + 2) | ||||||||
= | = | ||||||||
| (n + 1)! * (n + 1)! |
| (2n)! | (2n + 1) * 2(n + 1) | 4n + 2 | |||
* | ≤ 4n * | = | |||
| n! * n! | (n + 1)2 | n + 1 |
| 4n + 4 − 2 | 2 | |||
= 4n * | = 4n * (4 − | ) ≤ 4n * 4 = 4n + 1 | ||
| n + 1 | n + 1 |
| 2 | ||
ale przecież jeszcze jest (− | ) | |
| n+1 |
| 2 | ||
4 − | ≤ 4 tak ? | |
| n + 1 |
?
)