matematykaszkolna.pl
. .: dla jakich wartosci parametru a prosta y=ax+ b przechodzi przez punkt P=(3,0) i przecina parabolę y= −x2+ x +2 w dwoch punktach o dodatnich odcietych?
11 maj 17:06
Krzysiek: Bardzo ciekawe zadanie, podbijam je do góry forum, bo jest warte zauważenie i rozwiązania, a ja niestety nie umiem
11 maj 17:50
.: emotka moze bedziesz wiedzial, jak podpowiem, ze to zadanie znalazlem w dziale 'wzory viete'a' ? bo ja nie wiem, jak wzory viete'a maja się do tego i jak z nich skorzystac w tym przypadku.. ja probowalem tak chałupniczo, to znaczy napisalem wzor prostej przechodzacej przez punkt, pozniej narysowalem parabolę i badalem, jaki powinien byc ten parametr..
11 maj 18:16
Stan: najpierw współrzędne wierzchołka paraboli i jej miejsca przecięcia z OY W = (0,5;2,25) T = (0;2) punkty te są pierwszym i ostatnim miejscem, w którym prosta może przeciąć parabolę, tak żeby x>0 dany mam P = (3,0)
 y2 − y1 
ze wzoru a =

wyliczam współczynniki a
 x2 − x1 
 35 
amin = −

 16 
 2 
amax = −

 3 
 35 2 
więc a∊(−

,−

)
 16 3 
11 maj 18:40
Krzysiek: wzory viete'a pokazują, czy pierwiastki równania są dodatki czy ujemne, ale w tym zadaniu pierwiastki nam po nic
11 maj 18:48
Krzysiek: Stan, dwa pytania: −zdaje mi się, że wierzchołek paraboli jest niepotrzebny, przecież prosta ma przecinać parabole w dwóch punktach w pierwszej ćwiartce układu, więc ważne jest przecięcie z OX oraz OY −nie za bardzo kapuje co to za wzór, ten z którego wyliczasz a
11 maj 19:08
♊: rysunekKrzysiek: Prosta musi znajdować się pod wierzchołkiem, żeby przecinała parabolę w 2 miejscach. Jeśli by przechodziła za nisko, to by przecięła tylko 1 ramie, jeżeli za wysoko, to by nie przeciąła żadnego ramienia, przeszłaby nad parabolą. Rysunek czysto poglądowy.
11 maj 19:14
Krzysiek: tak, źle zrozumiałem co Stan napisał
11 maj 19:21
M.: a ja nawet ani razu nie mialam na lekcji czegos takiego jak wzory jakiegos Vite'a...
11 maj 19:23
.: Stan, ale ta odpowiedz jest zla.. odpowiedz ma wygladac tak a ∊ (−; − 9) u (−1; −2/3 )
11 maj 20:23
.: aa, to chyba dlatego, ze wspolrzedna y wierzcholka zle policzyles
11 maj 20:26
.: a nie, jednak dobrze
11 maj 20:28
Krzysiek: mógłby ktoś to zadanie zrobić krok po kroku, jak na maturze? BArdzo prosze
11 maj 20:28