log
zonk: oblicz log56 ,gdy a=log54,b=log527
17 paź 20:49
Eta:
| | b | |
log527= log533= 3log53 = b ⇒ log53= |
| |
| | 3 | |
| | a | |
log34= log522= 2log52= a ⇒ log52= |
| |
| | 2 | |
| | a | | b | | 3a+2b | |
to: log56= log5(2*3)= log52+log53= |
| + |
| = |
| |
| | 2 | | 3 | | 6 | |
17 paź 21:13
zonk: dziękuję
17 paź 21:16
zonk: ...a jak to policzyć?
oblicz log270,8 ,gdy a=log34 ,b=log35
17 paź 21:21
Maslanek: | | | | 1 | | 4 | | 1 | | 1 | |
log270,8= |
| = |
| log3 |
| = |
| (log34−log35)= |
| (a−b) |
| | log327 | | 3 | | 5 | | 3 | | 3 | |
17 paź 21:22
zonk: dzięki
17 paź 21:29