| n2+10n | ||
limn→∞ ( | )n | |
| 2n2+n |
| n2+10n | n2+10n+n2−9n−n2+9n | ||
= | = | ||
| 2n2+n | 2n2+n |
| 2n2+n−n2+9n | ||
= | = | |
| 2n2+n |
| −n2+9n | ||
=1+ | ||
| 2n2+n |
| −n2+9n | ||
αn= | ||
| 2n2+n |
| (−n2+9n)n | ||
limn→∞αnβn=limn→∞ | = | |
| 2n2+n |
| −n | ||||||||||||
=limn→∞ | = | =−∞ | |||||||||||
| 1 |
| 1 | ||
sory pytania nie było, bo granica wychodzi | wiec nie mogę z tej metody skorzystać ![]() ![]() | |
| 2 |
| n2+10n | 1 | 2(n2+10n) | |||
= | * | = | |||
| 2n2+n | 2 | 2n2+n |
| 1 | 2n2+20n | ||
* | = | ||
| 2 | 2n2+n |
| 1 | 2n2+n + 19n | ||
* | = | ||
| 2 | 2n2+n |
| 1 | 19n | ||
*(1 + | ) = | ||
| 2 | 2n2+n |
| 1 | 19n | ||
*(1+ | = | ||
| 2 | n(2n+1) |
| 1 | 19 | ||
*(1+ | ) = | ||
| 2 | 2n+1 |
| 1 | 192 | ||
*(1+ | ) = | ||
| 2 | n+12 |
| 1 | 9,5 | ||
*(1+ | ) | ||
| 2 | n+0,5 |
| 9,5 | ||
(1+ | )n → e9,5 | |
| n+0,5 |
| n2+10n | ||
limn→+∞ | = | |
| 2n2+n |
| 1+10n | 1+0 | 1 | ||||
limn→+∞ | = | = | ||||
| 2+1n | 2+0 | 2 |