matematykaszkolna.pl
nierówności K: Mam problem z tym zad. (rozwiąż nierówności): a) cos2x+3sin2x ≤ 1 b) cosx+tgx < 1 + sinx w tym b) zrobiłam tak, ale wydaje mi się, że jest to źle: cosx + tgx < 1 +sinx cosx + (sinx/cosx) < 1 + sinx cosx−sinx + (sinxcosx) < 1 cosx(cosx−sinx) + sinx < cosx cosx(cosx−sinx)< (cosx−sinx) cosx<1
14 paź 21:23
ZKS:
 1 
a) cos(2x) + 3sin(2x) ≤ 1 / *

 2 
1 3 1 

cos(2x) +

sin(2x) ≤

2 2 2 
 π π 1 
sin(

cos(2x) + cos(

)sin(2x) ≤

(sin(x)cos(y) + sin(y)cos(x) = sin(x + y))
 6 6 2 
 π 1 
sin(

+ 2x) ≤

 6 2 
Dokończ. A w przykładzie b) gdzie dziedzina?
14 paź 21:36
K: czyli cosx ≠ 0 i cosx ≠ sinx, tak?
14 paź 21:41
ZKS: Ja tam tylko widzę cos(x) ≠ 0.
14 paź 21:42
K: w tym wersie cosx(cosx−sinx)< (cosx−sinx) dzielę przez cosx−sinx, więc cosx−sinx ≠ 0 cosx ≠ sinx
14 paź 21:46
ZKS: A czemu przez to dzielisz? Tak samo jak x3 + x2 = x tutaj też podzielisz przez x?
14 paź 21:49
ZKS: (cos(x) − sin(x)) jest naszym wspólnym czynnikiem więc bierzmy go przed nawias.
14 paź 21:50
K: ok, dzięki emotka
14 paź 21:52
ZKS: Ale coś mi Twoje rozwiązanie w b) nie pasuje.
14 paź 21:58
K: czyli teraz tam będzie (cosx−1)(cosx−sinx) < 0
14 paź 22:08