| 1 | ||
a. jeśli f( | )=x2−3x+2 | |
| x |
| 1 | ||
b. jeśli f( | )=x+√1+x2 | |
| x |
| 1 | 1 | |||
c. jeśli f(x+ | )= x2+ | |||
| x | x2 |
| x | ||
d. jeśli f( | )=x2 | |
| x+1 |
| 1 | 3 | 1 | x2−3x+1 | |||||
f(x)= | − | +2= | (1−3x+2x2)= | |||||
| x2 | x | x2 | x2 |
| 1 | 1 | √1+x2 | 1 | 1+√1+x2 | ||||||
f(x)= | +√1+1x2= | + | = | (1+√1+x2)= | ||||||
| x | x | x | x | x |
| 1 | 1 | 1 | 1 | |||||
c) f(x+ | )=x2+2x* | + | −2 = (x+ | )2−2 , więc f(x)=x2−2 .... ![]() | ||||
| x | x | x2 | x |
| x | x2 | |||
f(x)=( | )2= | ... i tyle, chyba nie warto tu już nic robić . ... ) | ||
| 1−x | (1−x)2 |