| 2x−3 | ||
| | |≥2 | |
| x+1 |
| 2x−3 | 2x−3 | ||
≥ 2 lub | ≤ −2 x+1≠0 | ||
| x+3 | x+1 |
| 2x − 3 | ||
| | | ≥ 2 / * |x + 1| | |
| x + 1 |
| 2x−3 | |
−2≥0 | |
| x+3 |
| 2x−3−2(x+3) | |
≥0 | |
| x+3 |
| 2x−3−2x−6 | |
≥ 0 | |
| 2x+3 |
| −9 | |
≥0 | |
| 2x+3 |
| 2x−3 | |2x−3| | |||
| | |≥2 ⇔ | |≥2 /*|x+1| i x+1≠0 ⇔ |2x−3|≥2|x+1| /2 i [c[x≠ −1] ⇒ | ||
| x+1 | |x+1| |
| 2x−3 | ||
U{2x−3}{x+1 ]≥2 lub | ≤−2 x≠−1 | |
| x+1 |
| 2x−3−2(x+1) | 2x−3+2(x+1) | ||
≥0 | ≤0 | ||
| x+1 | x+1 |
| 2x−3−2x−2 | |
≥0 U2x−3+2x+2}[x+1} ≤0 | |
| x+1 |
| −5 | 4x−1 | ||
≥0 | ≤0 | ||
| x+1 | x+1 |
| −1 | ||
x<−1 x= | (4x−1)(x+1)=0 | |
| 4 |
(4x−1)(x+1) <0 dla x∊(−1,U{1}[4}>
teraz wszysko dodajemy
| 1` | ||
x∊(−∞ −1) v(−1, | ||
| 4 |