| 1 | |
| 2+3√2+3√4 |
a nie przypadkiem 4+23√2+3√4
albo inny układ
| 1 | 1 | 1 | |||
= | = | ||||
| 2+3√2+3√4 | a3 + a + a2 | a(a2+a+1) |
| a3−1 | ||
(a2+a+1)*(a−1) = a3 − 13 ⇔ (a2+a+1) = | ||
| a−1 |
| 1 | 1 | 3√2−1 | |||
= | * | = | |||
| 2+3√2+3√4 | 3√2(3√4+3√2+1) | 3√2−1 |
| 1 * (3√2−1) | 3√2−1 | 3√2−1 | ||||
= | = | = | = | |||
| 3√2((3√2)3 − 1 | 3√2(2−1) | 3√2 |
| 1 | 3√4 | |||
= 1 − | = 1 − | |||
| 3√2 | 2 |
| 1 | 23 | ||
* | |||
| 21+213+223 | 23 |