| sin2x | ||
limn−>0( | = | |
| x |
| (sinx)2 | ||
limn−>0( | = | |
| x |
| |||||||||||
limn−>0( | = | ||||||||||
| x |
| x2 | ||||||||||||
limn−>0( | = 0, bo | = x, który zbiega do zera | |||||||||||
| x | x |
| e2x − 1 | ||
limn−>0( | = czym to ugryźć? | |
| x |
| 0 | ||
[ | ] | |
| 0 |
| e2x −1 | ||
e2x −1 = | *2x = 1*2x | |
| 2x |
| 2x | |
= 2 | |
| x |
| ||||||||
limn−>0 | = 2 | |||||||
| x |
| sin2x | sinx | ||
= | * sinx → 1 * 0 = 0 przy x → 0 | ||
| x | x |
| e2x − 1 | e2x − 1 | ||
= | * 2 → 1 * 2 = 2 | ||
| x | 2x |
1) tak, ale możesz też nieco inaczej to zapisać, np. tak :
| sin2x | sin2x | |||
limx→0 | = limx→0 | * x = | ||
| x | x2 |
| sinx | ||
= (limx→0 | )2 * limx→0 x = 1* 0= 0 . | |
| x |
| e2x−1 | ex−1 | |||
2) limx→0 | = limx→0 | * (ex+1)= 1*(1+1)= 2 . ... ![]() | ||
| x | x |
| sin3x | cos5x | |||||||||
limx−>0 ( | 3x * | ) = | ||||||||
| 3x |
|
| 3 | ||
sin3x zbiega do 1, sin5x tego do 1, zostaje | cos5x, co z tym? | |
| 5 |
| 3 | ||
bedzie tak:? | * ... | |
| 5 |
| 3 | ||
cos5x, skoro x −>, więc cos0 = 1, czyli odp: | ||
| 5 |
| tgx − sinx |
| |||||||||
limx−>0 | = limx−>0 | = | ||||||||
| sin3x |
|
|
| |||||||||||||||
limx−>0 | = | |||||||||||||||
| x3 |
| sinx | tgx | x | |||||||||||
limx−>0 | = limx−>0 | {x3} = | = | |||||||||||
| x3 | cosx | x3 | x3 |
| ||||||||
limx−>0 | = | |||||||
| sin3x |
| 1 − sinx | ||
limx−>0 | = ![]() | |
| cosxsin2x |

| tgx−sinx | tgx(1−cosx) | |||
limx→0 | = limx→0 | = | ||
| sin3x | sin3x |
| 1−cosx | 1−cosx | |||
= limx→0 | = limx→0 | = | ||
| cosx sin2x | cosx(1−cos2x) |
| 1−cosx | 1 | |||
= limx→0 | = limx→0 | = | ||
| cosx(1−cosx)(1+cosx) | cosx (1+cosx) |
| 1 | 1 | |||
= | = | . ... ![]() | ||
| 1(1+1) | 2 |