matematykaszkolna.pl
pomocy Motojo_89: Płynący wzdłuż rzeki kuter spotkał tratwę w punkcie A. Przez czas t = 1 h licząc od chwili spotkania kuter płynął dalej wzdłuż rzeki do punktu B. Następnie zawrócił i ponownie spotkał tratwę w odległości l = 6 km od punktu A . Znajdź prędkość rzeki (tratwy) Vr, jeśli silniki kutra pracują cały czas jednakowo a czas zawracania jest nieistotny. UZasadnij rozwiązanie
3 paź 21:20
Basia: rysunek AB = 1*(Vk+Vr) bo płynie z prądem BL = t*(Vk−Vr) bo płynie pod prąd AL =(1+t)*Vr=6 bo tratwa płynie z prędkością prądu AB = AL+BL Vk+Vr = (1+t)*Vr + t(Vk−Vr) Vk+Vr = Vr+tVr+tVk−tVr Vk+Vr = Vr + tVk t = 1 (1+1)Vr = 6 Vr = 3
4 paź 01:12
geniusz: rysunek∑←Δ
8 paź 22:24