matematykaszkolna.pl
Zadanie z fizyki DOBRYMATEUSZ: 1. Paralaksa geocentryczna satelity wynosi 30 stopni. Na jakiej wysokości nad Ziemią się on znajduje? 2. Wyznacz graficznie paralaksę geocentryczną Księżyca. Wykonaj rysunek w odpowiedniej skali.
26 wrz 20:14
MQ: rysunek30R22R
26 wrz 20:27
DOBRYMATEUSZ: Nie mam pojęcia jak to dokończyć
26 wrz 20:50
MQ: Nie ma czego dokańczać. Rysunek wynika z właściwości trójkąta prostokątnego, którego jeden z kątów ostrych ma 30o R −− promień Ziemi 2R −− odległość od środka Ziemi do satelity.
26 wrz 20:53
DOBRYMATEUSZ: czyli odległość satelity to po prostu średnica Ziemi, tak?
26 wrz 20:55
MQ: Na to wychodzi
26 wrz 20:56
DOBRYMATEUSZ: ale odległością jest przyprostokątna, czy przeciwprostokątna 2R?
26 wrz 20:58
MQ: Sorry, przeczytałem jeszcze raz pytanie: Pytanie jest o wysokość nad Ziemią, więc 2R (odległość od środka Ziemi) minus R (promień Ziemi Wychodzi więc 2R−R=R CZyli nad Ziemią w odlełości równej promieniowi Ziemi. PS. Odc. o dł. 2R jest oczywiście przeciwprostokątną.
26 wrz 21:02
DOBRYMATEUSZ: w odpowiedziach mam że znajduje się na wysokości 4700 km
26 wrz 21:13
MQ: Nie wiem, skąd im tyle wyszło. Opis metody masz np. tu: http://draco.uni.opole.pl/moja_fizyka/numer6/artykuly/prezentacjan.html Nawet jeśli przyjmiemy, że trójkąt OKL jest równoramienny, to nie wychodzi 4700km, tylko więcej.
26 wrz 21:40
DOBRYMATEUSZ: a w tym 2 zadaniu że 1 stopień
26 wrz 21:52
MQ: rysunekJuż wiem jak to liczyli!
R 

=tg30o
R+h 
Stąd
 R 
h=

−R
 tg30o 
I wychodzi tyle, ile trzeba, ok. 4700km
26 wrz 22:13
MQ: Ad 2. Dokładnie 57' czyli prawie 1o
26 wrz 22:15
Dominika: PROSZĘ O POMOC, KOMPLETNIE TEGO NIE UMIEM! 1. Odległość do gwiazdy od Ziemi wynosi 40 AU. Ile wynosi jej paralaksa heliocentryczna? 2. Odległość do obiektu od Ziemi wynosi 163, 1 l .y. Ile wynosi jej paralaksa geocentryczna? 3. Jaka jest prędkość liniowa punktu obracającego się wokół środka w odległości 1,50 mm, jeżeli obraca się z częstotliwością 1200000r/min?
3 gru 18:55