1 | ||
x + | = k ∊ C | |
x |
1 | 1 | 1 | 1 | 1 | ||||||
x3 + | = (x + | )(x2 − x * | + | ) = k * (x2 + | − 1) = | |||||
x3 | x | x | x2 | x2 |
1 | 1 | |||
k * [ (x + | )2 − 2 * x * | − 1 ] = k * [ k2 − 3 ] = (k3 − 3k) ∊ C | ||
x | x |
1 | 1 | 1 | 1 | |||||
(x + | )(x2 − x* | + | ) = x3 + | |||||
x | x | x2 | x3 |
1 | 1 | 1 | 1 | |||||
(x2 − x* | + | ) = x2 − 1 + | −−− całkowita jeżeli x2 + | |||||
x | x2 | x2 | x2 |
1 | 1 | |||
x2 + | całkowita jeżeli x2 + | +2 całkowita | ||
x2 | x2 |
1 | 1 | 1 | ||||
x2 + 2x* | + | = (x+ | )2 | |||
x | x2 | x |
1 | ||
jeżeli x+ | całkowita to: | |
x |
1 | ||
x2 + 2 + | całkowita, oraz: | |
x2 |
1 | ||
x2 −1 + | całkowita, a więc także: | |
x2 |
1 | ||
x3 + | całkowita | |
x3 |
1 | ||
x+ | = k€C | |
x |
1 | 1 | 1 | 1 | 1 | 1 | |||||||
(x+ | )3= x3+3x2* | +3x* | + | = x3+ | +3(x+ | ) | ||||||
x | x | x2 | x3 | x3 | x |
1 | 1 | 1 | ||||
x3+ | = (x+ | )3−3(x+ | )= (k2−3k )€C | |||
x3 | x | x |