| 2 | ||
f(x)= arctg2x f'(x)= | ||
| 4 x2+1 |
| 2 | ||
∫xarctg2x= 12 x 2arctg2x − ∫ | 12 x 2 | |
| 4 x2+1 |
| 2 | ||
∫ | 12 x 2 i co dalej? | |
| 4 x2+1 |
| x2 | 1 | x2 | 1 | x2+1/4 − 1/4 | ||||||
∫ | dx = | ∫ | dx = | ∫ | dx = | |||||
| 4x2+1 | 4 | x2+1/4 | 4 | x2+1/4 |
| 1 | 1/4 | |||
= | ∫(1 − | ) dx = ... dokończ | ||
| 4 | x2+1/4 |
| 1 | dx | ||
∫ dx − 116 ∫ | = 14 x − 18 arctg2x ![]() | ||
| 4 | x2+ 14 |