BF − wysokość trójkąta równobocznego o boku długości 9
| a√3 | ||
h= | ||
| 2 |
| 9√3 | ||
h= | ||
| 2 |
| 1 | ||
|EF|= | h | |
| 3 |
| 1 | 9√3 | 3√3 | ||||
|EF|= | * | = | ||||
| 3 | 2 | 2 |
| 3√3 | 9*3 | 27 | 100 | 27 | 127 | |||||||
|FD|2=52 + ( | )2 = 25 + | = 25 + | = | + | = | |||||||
| 2 | 4 | 4 | 4 | 4 | 4 |
| √127 | ||
|FD|= | ||
| 2 |
| 1 | √127 | 9√127 | ||||
P= | *9* | = | ||||
| 2 | 2 | 4 |
| 9√127 | 27√127 | |||
PPb = 3* | = | |||
| 4 | 4 |
| a2√3 | 81√3 | |||
Pp= | = | |||
| 4 | 4 |
| 27√127 | 81√3 | |||
PC= | + | |||
| 4 | 4 |
a = 9
h = 5
| a√3 | 9 | |||
hp = | = | √3 → wysokość podstawy
| ||
| 2 | 2 |
| √19 | ||
hs = | → wysokość ściany bocznej
| |
| 2 |
| a2√3 | 81 | |||
Pp = | = | √3 → pole podstawy
| ||
| 4 | 4 |
| a*hs | 27 | |||
Pb = 3* | = | √19 → pole boczne
| ||
| 2 | 4 |
| 27 | ||
Pc = Pp + Pb = | (3√3+√19) → pole całkowite
| |
| 4 |
| √127 | ||
hs = | ||
| 2 |
| 27 | ||
Pb = | √127
| |
| 4 |
| 27 | ||
Pc = | (3√3+√127) ![]() | |
| 4 |