AB = BC = a = 4
AS = BS = CS = l = 4
AC = c = a√2 = 4√2
OC = c2 = 2√2
H = √l2 − (c2)2 = √42 − (2√2)2 = √16 − 8 = √8 = 2√2
hs = √l2 − (a2)2 = √42 − 22 = √16−4 = √12 = 2√3
Pp = a2 = 42 = 16 → pole podstawy
| c*H | a*hs | 4√2*2√2 | 4*2√3 | |||||
Pb = | + 2* | = | + 2* | = 8 + 8√3 = 8(1+√3)
| ||||
| 2 | 2 | 2 | 2 |
| a2 | 42 | |||
Pp = | = | = 8
| ||
| 2 | 2 |
| 16 | ||
V = | √2 ![]() | |
| 3 |