matematykaszkolna.pl
Króta całka , proszę o pomoc . Z góry dziękuję Bartek: ∫ ex dx
4 wrz 14:20
Bartek: TYLKO ŻE TEN X JEST POD PIERWIASTKIEM , JUŻ NIE WIEDZIAŁEM JAK TO ZROBIĆ. X=x
4 wrz 14:22
Jack: krótka odpowiedź: ex+c
4 wrz 14:22
Jack: heh...
4 wrz 14:22
Bartek: Jacku akurat ten przykład bym wiedział
4 wrz 14:23
Artur_z_miasta_Neptuna: np. tak:
 2xex 1 
∫ex dx = ∫

dx = // podstawienie s=x ; ds =

// =
 2x 2x 
= ∫ses ds = // przez części // = ....
4 wrz 14:28
Bartek: Mam tu jeszcze taki jeden przykład , czy mógłby mnie ktoś sprawdzić . ∫(3x2+1)arctgx dx wynik wyszedł mi taki: arctgx x3+x−1/4x4+1/2x2 −1/1+x2 + C
4 wrz 14:28
Artur_z_miasta_Neptuna: tam oczywiście zgubiłem 2 przed całką
4 wrz 14:28
Trivial: Artur, Nie ma co się tak męczyć z przekształcaniem. u = x u2 = x 2udu = dx ∫exdx = ∫2ueu du = ...
4 wrz 14:31
Artur_z_miasta_Neptuna:
 x3+x 
∫(3x2+1)arctgx dx = (x3+x)arctgx − ∫

dx = (x3+x)arctgx − ∫x dx =
 1+x2 
 x2 
= (x3+x)arctgx −

+ C
 2 
4 wrz 14:32
Artur_z_miasta_Neptuna: Trivial ... ja tu chciałem pokazać 'skąd to wyszło' emotka
4 wrz 14:32
Artur_z_miasta_Neptuna: chciałem zablysnąć ... a tu ni maemotka
4 wrz 14:32
Bartek: Dzięki, wszystkim za pomoc. Artur zrobiłem twoim sposobem .
4 wrz 14:34
Bartek: Aha czyli w tym drugim wyszło mi źle:?( ja to robiłem przez części arctgx podstawilem pod "g" a to drugie pod f . a Ty pewnie odwrotnie
4 wrz 14:37
Bartek: pfff znaczy ty tak podstawiles a ja odwrotnie juz sie glubie
4 wrz 14:38
Artur_z_miasta_Neptuna: to w takim razie źle wyliczyleś bo nie masz pojęcia ile to jest ∫arctgx dx (znaczy może i wiesz ... ale to nie jest prosta całka)
4 wrz 14:44